Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

https://sam.nitk.ac.in/

sam@nitk.edu.in

MA222 - Computational Linear Algebra Problem Sheet - 2

Exploiting Structure

- 1. Give an algorithm that overwrites A with A^2 where $A \in \mathbb{R}^{n \times n}$ is (a) upper triangular and (b) square. Strive for a minimum workspace in each case.
- 2. Suppose $A \in \mathbb{R}^{n \times n}$ is upper Hessenberg and that scalars $\lambda_1, \ldots, \lambda_T$ are given. Give a saxpy algorithm for computing the first column of $M = (A \lambda_1 I) \cdots (A \lambda_T I)$.
- 3. Give a column saxpy algorithm for the *n*-by-*n* matrix multiplication problem C = AB where *A* is upper triangular and *B* is lower triangular.
- 4. Extend Algorithm 1.2.2 so that it can handle rectangular band matrices. Be sure to describe the underlying data structure.
- 5. $A \in \mathbb{R}^{n \times n}$ is Hermitian if $A^H = A$. If A = B + iC, then it is easy to show that $B^T = B$ and $C^T = -C$. Suppose we represent A in an array A.herm with the property that A.herm(i, j) however b_{ij} if $i \ge j$ and c_{ij} if j > i. Using this data structure write a matrix-vector multiply function that computes Re(z) and Im(z) from Re(x) and Im(x) so that z = Ax.
- 6. Suppose $X \in \mathbb{R}^{n \times p}$ and $A \in \mathbb{R}^{n \times n}$, with *A* symmetric and stored by diagonal. Give an algorithm that computes $Y = X^T A X$ and stores the result by diagonal. Use separate arrays for *A* and *Y*.
- 7. Suppose $a \in \mathbb{R}^n$ is given and that $A \in \mathbb{R}^{n \times n}$ has the property that $a_{ij} = a_{|i-j|+1}$. Give an algorithm that overwrites y with Ax + y where $x, y \in \mathbb{R}^n$ are given.
- 8. Suppose $a \in \mathbb{R}^n$ is given and that $A \in \mathbb{R}^{n \times n}$ has the property that $a_{ij} = a_{((i+j-1) \mod n)+1}$. Give an algorithm that overwrites *y* with Ax + y where $x, y \in \mathbb{R}^n$ are given.
- 9. Develop a compact store-by-diagonal scheme for unsymmetric band matrices and write the corresponding gaxpy algorithm.
- 10. Suppose *p* and *q* are *n*-vectors and that $A = (a_{ij})$ is defined by $a_{ij} = a_{ji} = p_i q_j$ for $1 \le i \le j \le n$. How many flops are required to compute y = Ax where $x \in \mathbb{R}^n$ is given?
